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Abstract

The lagged rank cross-correlation between model-derived root-zone soil moisture es-
timates and remotely-sensed vegetation indices (VI) is examined between January
2000 and December 2010 to quantify the skill of various soil moisture models for agri-
cultural drought monitoring. Examined modeling strategies range from a simple an-
tecedent precipitation index to the application of modern land surface models (LSMs)
based on complex water and energy balance formations. A quasi-global evaluation of
lagged VI/soil moisture cross-correlation suggests, when averaged in bulk across the
annual cycle, little or no added skill (<5 % in relative terms) is associated with applying
modern LSMs to off-line agricultural drought monitoring relative to simple accounting
procedures based solely on observed precipitation accumulations. However, slightly
larger amounts of added skill (5-15 % in relative terms) are identified when focusing
exclusively on the extra-tropical growing season and/or utilizing soil moisture values
acquired by averaging across a multi-model ensemble.

1 Introduction

Agricultural drought is commonly defined as the lack of sufficient soil water availability
to maintain adequate crop growth and pasture productivity (Panu and Sharma, 2002).
The development of large-scale drought agricultural monitoring systems has received
considerable attention in the past decade, and a range of remote sensing, ground ob-
servation, and land surface modeling techniques have been proposed in an effort to
improve the early detection of agricultural drought and the efficiency of subsequent
mitigation responses (Wardlow et al., 2012). One common approach has been the ap-
plication of complex water balance formulations embedded within land surface models
(LSMs) to track temporal anomalies in root-zone soil water availability (Mo et al., 2010;
Sheffield et al., 2012). These models typically include water and energy balance formu-
lations based on time-varying meteorological and radiative forcing as well as detailed
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vertical soil physics to describe sub-surface soil water soil flux and storage. As a re-
sult, these “modern” LSMs implicitly promise an enhanced representation of root-zone
soil water dynamics relative to soil moisture proxy products based solely on the simple
accounting of antecedent precipitation. Recent work has also focused on the potential
for improving soil moisture predictions by averaging across a multi-model ensemble
comprised of various LSMs (Guo et al., 2007). Despite this potential, quantifying the
marginal value of modern LSMs for global drought monitoring is challenging due to
a lack of adequate large-scale root-zone soil water datasets available for evaluation
purposes (Bolten et al., 2010).

Recently, Peled et al. (2010) proposed a novel approach for evaluating LSM soil
moisture predictions by examining the cross-correlation between model-estimated root-
zone soil moisture anomalies and spatially concurrent anomalies in vegetation indices
derived from visible/near-infrared (VIS/NIR) remote sensing. The use of VIS/NIR vege-
tation indices (VI) like the Enhanced Vegetation Index (EVI) and the Normalized Differ-
ence Vegetation Index (NDVI) is well-established for monitoring the extent and severity
of agricultural drought (Kogan, 1995; Peters et al., 2002; Ji and Peters, 2003). The
potential of root-zone soil moisture monitoring lies in its ability to provide a leading
indicator of subsequent VI anomalies (Adegoke and Carleton, 2002; Ji and Peters,
2005; Musyimi, 2010). That is, under water-limited conditions, a negative soil mois-
ture anomaly should temporally precede a detectable impact on vegetation health
and biomass. The analysis in Peled et al. (2010) is based on the assumption that
the strength of lagged soil moisture/VI cross-correlation can be used as a large-scale
proxy for the accuracy of a model-based, root-zone soil moisture product.

Here we expand the geographic scope of Peled et al. (2010) (from the European
continent to all global land between 60° S and 60° N) and evaluate a wider range of po-
tential land surface modeling strategies. In particular, this analysis will employ various
global LSMs, ranging from complex, modern LSMs to a simple antecedent precipita-
tion index to sample lagged rank-correlations between model-estimated soil moisture
and remotely-sensed VI products. These cross-correlations will then be examined for
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evidence that higher-order water and energy processes captured by modern LSMs, but
neglected in simple accounting procedures based solely on antecedent precipitation,
add significant marginal utility to agricultural drought monitoring. In addition to evalu-
ating stand-alone LSM predictions, the advantages of acquiring soil moisture products
from a multi-model ensemble will also be quantified.

2 Models and data

The analysis is based on root-zone soil moisture products extracted from four sepa-
rate models: version 3.2 of the National Centers for Environmental Prediction, Oregon
State University, Air Force Weather Office and National Weather Service Hydrologic
Research Laboratory model (Noah) (Ek et al., 2003; Mitchell, 2005; Barlarge et al.,
2010), version 2.0 of the Common Land Model (CLM) (Dai et al., 2003), the Catch-
ment Land Surface Model (CLSM) (Koster et al., 2000; Ducharne et al., 2000) and, as
an obviously simplified baseline approach, an antecedent precipitation index (API). All
models are run on a global 0.25° grid between 1 January 2000 and 31 December 2010
for all global land areas between 60° S and 60° N. Noah, CLM, and CLSM are run on
a half-hourly time step while API calculations are based on a daily time step. For each
model, a 1 January 2000 initialization is derived by separately looping each model
through three integrations of this time period.

2.1 Soil moisture models

Noah, CLM, and CLSM simulations are conducted using the NASA Land Information
System (LIS) data assimilation test-bed which provides a framework for the integrated
use of several community LSMs (Kumar et al., 2006). All three models dynamically pre-
dict vertically-discretized profile soil moisture based on a complex vertical representa-
tion of water flow within the soil column and surface energy balance approaches for
the estimation of evapotranspiration. In addition to precipitation, modern LSMs require
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air temperature, air pressure, relatively humidity, wind speed, and radiation (both short-
wave and long-wave) forcing data as input. Vertical soil water processes (e.qg., infiltra-
tion and drainage) vary as a function of soil hydraulic properties typically tied to soil
textural classifications through pedo-transfer functions. Energy balance processes de-
pend strongly on land surface parameters like albedo, surface roughness, and leaf area
index parameters typically specified as a function of vegetation class or climatological
VI information. While the focus here is on the growing season, it should be noted that
Noah, CLM, and CLSM all contain snow modules which account for the accumulation,
retention and melting of snow water storage.

Root-zone soil moisture is nominally defined as LSM-predicted soil moisture for the
top 1-meter of the soil column (8). For this particular implementation, Noah uses four
soil layers with thicknesses of 10, 30, 60, and 100 cm (descending from the surface),
and CLM uses ten soil layers with thicknesses of 1.75, 2.76, 4.55, 7.5, 12.36, 20.38,
33.60, 55.39, 91.33, and 113.7 cm. Consequently, the top three Noah layers and top
eight CLM layers are averaged (using relative weights equal to the ratio of each layer
thickness to the 1-m total root-zone depth) to obtain an integrated root-zone soil mois-
ture product. The Catchment LSM, by contrast, is non-traditional in that the vertical
soil moisture profile is determined through deviations from the equilibrium soil mois-
ture profile between the surface and the water table. In the CLSM, soil moisture is
calculated within a 2-cm surface layer and a 1-m root-zone layer is diagnosed from the
modeled soil moisture profile (Koster et al., 2000). All three modern LSMs (Noah, CLM,
and CLSM) are run on a half-hourly time step continuously throughout the year.

An API-based root-zone soil water proxy (€ 5p|) is calculated as a linear combination
of the previous day’s value (6 ap ;_1) and accumulated precipitation (in mm) for the
current day (P)):

O apij = VO apij-1+F (1)

where the constant parameter y controls the effective memory of API levels to past rain-
fall accumulations. Unlike the modern LSMs described above, the APl model explicitly

5171

HESSD
9, 5167-5193, 2012

Drought monitoring
utility

W. T. Crow et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

ignores variations in root-zone soil moisture storage due to surface energy balance pro-
cesses (e.g., evapotranspiration and/or net radiation), the vertical and/or lateral move-
ment of water between multiple soil moisture states, and the impact of snow melt on
soil water availability.

2.2 Forcing and evaluation data

All three modern LSMs (i.e., Noah, CLM, and CLSM) are driven by two separate forc-
ing data sets which provide fine-scale (hourly to three-hourly) values of: precipitation,
insolation, air temperature, humidity, wind speed, and air pressure. The first data set is
derived from the Global Data Assimilation System (GDAS) obtained from the weather
forecast model of the National Centers for Environmental Prediction (Derber et al.,
1991). In order to mitigate known biases in GDAS precipitation fields, coarse-resolution
rainfall accumulations are based on the NOAA Climate Prediction Center's (CPC) op-
erational global 2.5°, 5-day Merged Analysis of Precipitation (CMAP) product (Xie and
Arkin, 1997) which blends satellite and rain-gauge observations. The GDAS modeled
precipitation fields are then used only to temporally and spatially disaggregate CMAP
accumulation totals.

While this “GDAS+CMAP” product is representative of currently-available global
LSM forcing datasets, higher-quality forcing data sets are available in selected conti-
nental areas. To reflect this, the modern LSMs are also forced with the North American
Land Data Assimilation System Version 2 (NLDAS-2) forcing dataset (Xia et al., 2012)
within a regional domain centered on the contiguous United States (CONUS) (25.75°—
52°N, 124°-68.75° W). Relative to GDAS+CMAP, the NLDAS-2 dataset is based on
regional (as opposed to global) reanalysis products and leverages a greater abun-
dance of ground and satellite-based observational resources. In particular, NLDAS-
2 precipitation is based on the merger of: daily CPC rain gauge accumulations with
ground-based radar, satellite-based precipitation, and North American Regional Re-
analysis (NARR) precipitation fields (Cosgrove et al., 2003). Incoming long-wave and
shortwave radiation estimates are taken from the NASA/GEWEX Surface Radiation
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Budget (SRB) dataset and geostationary satellite observations. Remaining NLDAS-2
forcing variables (e.g., air temperature, wind speed, relative humidity, and air pressure)
are based on NCEP North American Regional Reanalysis (NARR).

Modern LSMs generally input remotely-sensed VI information to estimate vegetation
parameters. Here, all such parameters are derived from climatological VI information
derived from long-term Advanced Very High Resolution Radiometer (AVHRR) surface
reflectance products. Since they lack inter-annual variability, the use of climatological
VI information as LSM input minimizes the risk of error cross-correlation between LSM
soil moisture predictions and annual variations in VI used for evaluation purposes. Ad-
ditional land cover information is derived from the 1-km University of Maryland land
cover classification (Hansen et al., 2000). Assumed soil texture is obtained by merging
the global Foreign Agricultural Office (FAO) soil classification product with the State
Soil Geographic (STATSGO) database within CONUS.

In contrast, the APl model is forced solely by daily (00:00 to 24:00 UTC) precipita-
tion accumulations acquired by temporally aggregating sub-daily GDAS+CMAP and/or
NLDAS-2 precipitation accumulations. The single parameter y is assumed to be a fixed
global constant (see below). NDVI values used for evaluation purposes are taken from
the monthly Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13C2 com-
posite product (Collection 5) between February 2000 and December 2010. Only reli-
able MODIS VI retrievals categorized as “Good data — use with confidence” in the
MOD13C2 pixel reliability field are included in the analysis and spatially aggregated to
match the 0.25° LSM modeling grid.

3 Analysis

The analysis is based on the assumption that higher-quality root-zone soil moisture
data sets will exhibit stronger lagged correlations with future VI anomalies (Peled et al.,
2010). However, secondary characteristics like climatological seasonality, distribution
shape, and temporal auto-correlation can also impact soil moisture/VI cross-correlations.
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In order to minimize these effects, results are based on rank correlations sampled after
the transformation of both raw VI and soil moisture data into a monthly rank time se-
ries and the standardization of soil moisture auto-correlation functions. See below for
a description of this processing.

3.1 Rank time series calculation

To begin, every model-based root-zone soil moisture product 8 is aggregated to create
a monthly time series 8, from January 2000 to December 2010 for each 0.25° land pixel
between 60° S and 60° N. Next, 8, for a single month i (and single 0.25° land pixel) are
ranked across all eleven occurrences of the same month-of-year between 2000 and
2010 for the same pixel. As a result, the 6 time series is transformed into a monthly

time series of ranks — or Rank(@); — which reflect the relative wetness of a particular
month relative to the same month during all other years. The same ranking procedure

is applied to monthly NDVI to create Rank( NDVI),. This rank transformation accom-
plishes two key things. First, it removes the seasonal cycle from each product so that
the analysis focuses solely on inter-annual variations. Second, it ensures a consistent
distribution for variables in the cross-correlation analysis and minimizes the potential
impact of outliers. The use of a monthly time scale is intended as a compromise be-
tween minimizing the temporal resolution of the analysis while maximizing the spatial
coverage and completeness of composited VI products.

Figure 1 shows example times series of monthly Rank(8 yoan) and Rank( NDVI) for
a single 0.25° pixel in the Southern Great Plains of the United States. Formally, the y-
axis describes the fractional rank of month / relative to the same month-of-year found
in other years of the 2000 to 2010 time period (i.e., the fraction of the same month-

of-year in different years with lower 8 or lower NDVI). Periodic gaps in the NDVI time
series reflect months where MODIS-based NDVI products are deemed unreliable.
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3.2 Rank auto-correlation analysis and standardization

Despite the fact that Noah, CLM, and CLSM root-zone products are all defined to pro-
vide top-1-m soil moisture products, differences in evapotranspiration and drainage
parameterizations between models can induce variations in the effective persistence
of soil moisture anomalies. Such differences can, in turn, impact sampled soil mois-
ture/VI cross-correlation. To address this, the auto-correlation function of Rank(8); —
or p(L) — is standardized across all models prior to further cross-correlation analysis.
With this goal in mind, Fig. 2a plots quasi-global averages (i.e., land areas between
60°S and 60° N) of p(L) for root-zone soil moisture estimates from Noah, CLM, and
CLSM. For top-1-meter LSM results, CLM, and CLSM p(L) results match relatively
closely. However, 1-m Noah results show significantly more temporal auto-correlation.
Consequently, all subsequent Noah results are instead based on a shallower vertical
integration of soil moisture (i.e., top 40-cm versus top-1-m). Unlike the original 1-m re-
sults, 40-cm Noah soil moisture results provide a close match to 1-m CLM and CLSM
po(L) results. Also note that the resulting po(L) functions show considerable temporal
auto-correlation at lags of £1-month — suggesting that a monthly time scale represents
a reasonable temporal support for capturing root-zone soil moisture dynamics.

API results are based on calibrating y in (1) to produce quasi-globally-averaged
API-based p(L) results which approximate that of the modern LSMs. However, due
to differences in the in the shape of API's p(L) function relative to the modern LSMs
there is some ambiguity in this calibration. Figure 2b illustrates this effect by compar-
ing quasi-globally-averaged p(L) for y = 0.98, 0.985, and 0.99 to the absolute range of
o(L) results for Noah, CLM, and CLSM. Note that y = 0.98 represents a plausible fit
to the modern LSM range for |L| = 1 but drifts badly for larger |L|. Conversely, y = 0.99
is adequate at large |L| but poor for small |L|. While the middle choice of y = 0.985
minimizes misfits over the entire range of L, it still performs badly at large |L|. Unless
otherwise noted, all future API results will be for the middle case y = 0.985. However,
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given the ambiguity noted in Fig. 2b, the sensitivity of key API results to y will also be
noted.

3.3 Ensemble-mean product

As described above, a final soil moisture product is created by averaging across soil
moisture results within a multi-model ensemble. This product is based on transforming
each of the four monthly root-zone soil moisture products (8 noan» @ cim» @ cLsm and
0 ap) into their standard normal deviates:

6=
i~ o

()

where pg and oy are the sampled mean and standard-deviation, respectively, for each
@ product during all occurrences of the month-of-year associated with month /. Next, all
four anomaly products are averaged to create a monthly ensemble-averaged product:

1 / all
cLsm,; T O API,i) ' (3)

all — ! all a)
Oensi = 7 ( Noani * &'cLm ¢

The resulting time-series of éIENS are then ranked to create Rank(6 gys). Note that the
anomaly notation is dropped when referring to this rank product since Rank(9 ENS) =
Rank(6 ENS)

3.4 Rank cross-correlation calculation

The Spearman rank cross-correlation R(L) at lag L between NDVI and all five root-zone

soil moisture rank products (i.e., Rank(6 yoan), Rank(0 ciy), Rank(8 ¢ sy), Rank(f gys),
and Rank(@ ap))) is calculated as the sampled correlation coefficient between Rank(6);,,

and Rank( NDVI) over all possible /. Based on this definition, R(L) for L < 0 relates
the ability of current soil moisture conditions to forecast future NDVI. It is important to
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note that positive R(L) is not be expected for all biomes or land cover types. For exam-
ple, in energy-limited areas, relatively dry periods may be associated with enhanced
VI due to reduced cloudiness (Huete et al., 2006). In these areas, an increase in R(L)
(i.e., making it less negative) cannot be reliability linked to improved soil moisture skill.
Therefore, all 0.25° pixels in which the null hypothesis R(-1) >=0 can be rejected
(at 80 % significance) for any model product is subsequently masked from the entire
analysis. In order to minimize the impact of cold-season conditions, months with an
average daily high air temperature below 5 °C are also removed (on a month-by-month
and pixel-by-pixel basis).

4 Results

For the case L = —1 (i.e., Rank(d) temporally precedes Rank( NDVI) by 1 month),
Fig. 3 plots global, 0.25° Noah, CLM, CLSM, ENS and API R(-1) results. White masked
areas represent a combination of open water surfaces, areas with non-significant pos-
itive R(—1) (see above), and barren areas where no temporal NDVI variability is ob-
served. Substantial coupling (R(-1) > 0.50) is found in semi-arid areas of the world
prone to water-limited plant growth (e.g., Australia, Southern Africa, and the West-
ern United States). Conversely, humid areas of the Eastern United States, Europe, and
Southeastern Asia demonstrate weak soil moisture/VI cross-correlation (R(-1) < 0.20).
A secondary cause of low R(-1) is poor accuracy in model-based soil moisture predic-
tions. For example, low sampled R(-1) in arid regions of sub-Saharan Africa are likely
caused by inadequate rain gauge coverage which prevents LSMs from accurately cap-
turing relative soil moisture variations in data-poor regions.

Figure 4 examines model-to-model differences in performance between models by
plotting spatially-distributed Z-scores for sampled R(-1) differences between the four
approaches based on modern LSM simulations (i.e., Noah, CLSM, CLM, and ENS)
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and the API baseline. Since the Fischer transformation

F(R) = 5 La([1 +RI/[1 - R) @

of sampled R yields a normal distribution with variance 1/(n-1) (Van Storch and
Zwiers, 2004), Z-scores for R(—1) differences between an LSM and API can be calcu-
lated as:

n-1
2

where n is taken to be the number of months sampled to obtain R(—1). Note that
since Eq. (5) neglects the impact of temporal auto-correlation in both Rank( NDVI)

and Rank(9), these Z-scores are likely not appropriate for formal hypothesis testing.
Nevertheless, they represent a useful tool for standardizing observed model-to-model
differences. While regions of significantly improved NDVI forecasting (relative to API)
exist in Noah, CLM, and CLSM predictions (i.e., positive Z scores indicated by red
shading in Fig. 4), they are balanced by areas where API-based soil moisture products
are superior (i.e., negative Z-scores indicated by blue shading in Fig. 4). Only the
multi-model ENS case appears to consistently improve upon the API baseline.

Figure 5a compares modeling results on a quasi-global scale by plotting average
R(L) across all unmasked land areas in Fig. 3 for a range of L. Sampled R (L) functions
are not symmetric with respect to L = 0, and instead are larger for L < 0. This lack
of symmetry underscores the predictive role for soil moisture where the largest R (L)
is sampled for the L < 0 case where Rank(8) precedes Rank( NDVI). Using Egs. (4)
and (5), error bars can be constructed for individual points in Fig. 5. However, even if
conservative reductions in effective degrees of freedom are made to account for po-
tential spatial and temporal autocorrelation in Rank( NDVI) and Rank(8), 1o sampling
uncertainty associated with these quasi-global averages of R(-1) remains on the or-
der of 0.005 [-] to 0.001 [-] and therefore smaller than the size of plotted symbols in
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Fig. 5. Consequently, it is safe to assume that all visible differences in plotted R (L) are
significant at a 1o certainty level.

Nevertheless, among the stand-alone models, the relative magnitude of model-to-
model variations is small. For L < 0, Noah, CLM, and CLSM results are associated with
R(L) values that fall within about +5 % of baseline API results (Fig. 5b). That is, none
of the stand-alone modern LSMs demonstrate any substantial advantage over API in
anticipating the near-term impact of agricultural drought on NDVI anomalies. However,
using a multi-model ensemble average acquired from Eq. (3) leads to a larger (and
more consistent) amount of improvement relative to the API baseline (see Fig. 5b). As
a result, the only viable method for increasing R (L) through the use of modified model
physics appears to lie in the use of multi-model ensembles.

Utilizing EVI as the target VI (not shown) produces a qualitatively similar plot except
sampled R(L) values are somewhat lower than those found using NDVI for all modeling
cases. Likewise, APl R(L) results in Fig. 5 are slightly improved when using lower
values of y in Eq. (1); however, the overall effect is very small. For example, reducing
y from 0.99 to 0.98 (i.e., covering the entire plausible range of y indentified in Fig. 2b)
increases globally-average APl R(—1) results by only ~2 % (not shown).

4.1 Impact of forcing data quality

Since modern LSMs attempt to exploit temporal variations in non-rainfall based forcing
(e.g., air temperature and insolation) to better predict soil moisture anomalies, one fac-
tor impacting the performance spread between modern LSMs and an API baseline may
be the quality of non-rainfall forcing data. Figure 6 looks at the impact of replacing the
global GDAS + CMAP forcing dataset with the higher-quality (but non-global) NLDAS-2
dataset. Dashed lines in Fig. 6a show CONUS GDAS + CMAP R(L) results for each
model and solid lines NLDAS-2 results for the same CONUS domain. For clarity, ENS
results are omitted. The transition between GDAS+CMAP and NLDAS-2 forcing clearly
improves the performance of the models. However, nearly all of this improvement is at-
tributable to improved rainfall since there is no discernible improvement in modern LSM
5179
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results relative to API (Fig. 6b). In fact, for L < -4, utilizing NLDAS-2 forcing actually de-
grades the quality of the modern LSM forcings relative to API (Fig. 6b). Consequently,
there is no evidence that enhancing the quality of non-rainfall forcing data improves the
performance of modern LSMs relative to the API baseline.

4.2 Impact of seasonality

Large seasonal variability in soil water availability, and thus R(L), is expected in certain
climate zones. To examine such seasonal variability, Fig. 7 plots spatially-averaged
R(-1) within various latitude bands according to the month-of-year for Rank(8) ob-
tained using GDAS+CMAP forcings. In order to ensure the consistent spatial sup-
port of sampled R(-1) among different months, the monthly air temperature mask
(see Sect. 3) is not applied here. Observed monthly trends in Fig. 7 conform well to
expected seasonal patterns. For instance, in the extra-tropical Northern Hemisphere
(ETNH; Fig. 7a) the highest soil moisture/vegetation coupling, and thus sampled R(-1),
occurs during the boreal summer when root-zone soil moisture is generally minimized.
Likewise, seasonal R(—1) trends in tropical regions (Figs. 7b and c) reflect the expected
progression of the tropical rain belt with relatively lower R(-1) found during the rainy
seasons for both the tropical Northern Hemisphere (TNH; May to October) and tropical
Southern Hemisphere (TSH; November to April).

Figure 8 mirrors Fig. 5a by plotting results in Fig. 7 in terms of percentage variation
versus an APl baseline. Despite relatively modest model-to-model variability in Fig. 7,
several trends can be noted. For example, R(-1) for Noah and CLM consistently im-
proves upon the API baseline during mid-to-late portions of the ETNH growing season
(see June to November results in Fig. 8a). The enhanced importance of evapotranspi-
ration (on the overall soil water balance) in this period may increase the value of energy
balance calculations made by modern LSMs. Likewise, during the end of both the TNH
rainy season (September to November in Fig. 8b) and TSH rainy season (January to
March in Fig. 8c), all three modern LSMs maintain a clear advantage over API.
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5 Conclusions

Given the wide variety of remote sensing, ground observation, and modeling strate-
gies currently being proposed for global agricultural drought monitoring (Wardlow et
al., 2012), it is important to define benchmarking strategies capable of objectively eval-
uating the relative merits of each. Here, we quantify the added benefit of modern LSMs
for anticipating future vegetation health and biomass anomalies relative to a baseline
case of utilizing a much simpler antecedent precipitation index (API). Unlike API, mod-
ern LSMs offer a complex parameterization of the surface energy balance and detailed
vertical water balance physics in an attempt to more accurately characterize temporal
variations in root-zone soil moisture availability. However, when objectively evaluated
at global scales over the entire seasonal cycle, modern LSMs offer little or no advan-
tage versus an API baseline in terms of anticipating the impact of agricultural drought
on vegetation condition (Figs. 3, 4, and 5). The relative utility of modern LSMs versus
APl is not enhanced by improving the quality of LSM forcing data (Fig. 6). Taken as a
whole, results suggest that non-rainfall forcing data and modern LSM energy balance
calculations contribute relatively little towards the accuracy of agricultural drought mon-
itoring systems. As such, results are broadly consistent with past work in Abramowitz
et al. (2008) questioning the general utility of LSM energy balance calculations, and im-
ply that increasing LSM complexity is generally not an effective strategy for enhanced
agricultural drought monitoring.

However, several caveats should be attached to this conclusion. Clear additive value
does emerge when root-zone soil moisture estimates obtained from various models
(including multiple modern LSMs) are merged into a single ensemble-mean prediction
(Figs. 3 and 5). In addition, more added value (around 5% to 15 % in relative terms)
for modern LSMs is found during specific points along the seasonal cycle (Fig. 8) —
particularly during middle to late portions of the ETNH growing season (see July to Oc-
tober in Fig. 8a). Given the importance of this period for agricultural drought monitoring,
LSM performance during these months should (arguably) be given enhanced emphasis
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when making overall assessments. Likewise, all results are based solely on the off-line
application of LSMs and do not reflect the potential benefits of using a modern LSMin a
coupled land/atmosphere modeling system. Such coupling could conceivably add skill
to long-term precipitation forecasts and may therefore contribute to agricultural drought
forecasting. Finally, even if their contribution to off-line drought prediction is marginal,
modern LSMs may still have substantial utility in describing the subsequent impact of
drought conditions on water balance processes like ET and runoff. Such diagnostic
value cannot, of course, be duplicated by the API.

Acknowledgements. Research was supported by NASA Applied Sciences Grant entitled “En-
hancing the USDA Global Crop Production Decision Support System with the NASA Land
Information System and Water Cycle Satellite Observations” (W. T. Crow — Principal Investi-
gator). Computing was partially supported by the resources at the NASA Center for Climate
Simulation.

References

Abramowitz, G., Leuning, R., Clark, M., and Pitman, A.: Evaluating the performance of land
surface models, J. Climate, 21, 5468-5481, 2008. 5181

Adegoke, J. O. and Carleton, A. M.: Relations between soil moisture and satellite vegetation
indices in the US Corn Belt, J. Hydrometeorol., 3, 395-405, 2002. 5169

Barlage, M., Chen, F., Tewari, M., lkeda, K., Gochis, D., Dudhia, J., Rasmussen, R.,
Livneh, B., Ek, M., and Mitchell, K.: Noah land surface model modifications to improve
snowpack prediction in the colorado rocky mountains, J. Geophys. Res., 115, D22101,
doi:10.1029/2009JD013470, 2010. 5170

Bolten, J. D., Crow, W. T., Jackson, T. J., Zhan, X., and Reynolds, C. A.: Evaluating the utility of
remotely-sensed soil moisture retrievals for operational agricultural drought monitoring, IEEE
J. Sel. Top. Appl., 3, 57-77, doi:10.1109/JSTARS.2009.2037163, 2010. 5169

Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J., Robock,
A., Marshall, C., Sheffield, J., Luo, L., Duan, Q., Pinker, R. T., Tarpley, J. D., Higgins, R. W.,
and Meng, J.: Real-time and retrospective forcing in the North American Land Data Assim-

5182

HESSD
9, 5167-5193, 2012

Drought monitoring

utility
W. T. Crow et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2009JD013470
http://dx.doi.org/10.1109/JSTARS.2009.2037163

10

15

20

25

30

ilation System (NLDAS) project, J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118,
2003. 5172

Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G., Bosilovich, M., Denning, S., Dirmeyer,
P., Houser, P, Niu, G., Oleson, K., Schlosser, A., and Yang, Z.-L.: The common land model
(CLM), B. Am. Meteorol. Soc., 84, 1013-1023, doi:10.1175/BAMS-84-8-1013, 2003. 5170

Derber, J., Parrish, D., and Lord, S.: The new global operational analysis system at the National
Meteorological Center, Weather Forecast., 6, 538-547, 1991. 5172

Ducharne, A., Koster, R., Suarez, M., Stieglitz, M., and Kumar, P.: A catchment-based approach
to modeling land surface processes in a general circulation model. 2. Parameter estimation
and model demonstration, J Geophys. Res., 105, 24823-24838, 2000. 5170

Ek, M. B., Mitchell, K. E., Yin, L., Rogers, P., Grunmann, P, Koren, V., Gayno, G., and Tarp-
ley, J. D.: Implementation of Noah land-surface model advances in the NCEP operational
mesoscale Eta model, J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296, 2003.
5170

Guo, Z., Dirmeyer, P. A., Gao, X., and Zhao, M.: Improving the quality of simulated soil moisture
with a multi-model ensemble approach, Q. J. Roy. Meteor. Soc., 133, 731-747, 2007. 5169

Hansen, M., DeFries, R., Townshend, J., and Sohlberg, R.: Global land cover classification at
1 km spatial resolution using a classification tree approach, Int. J. Remote Sens., 21, 1331-
1364, 2000. 5173

Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P, Saleska, S. R., Hutyra, L. R., Yang, W.,
Nemani, R. R., and Myneni, R.: Amazon rainforests green-up with sunlight in dry season,
Geophys. Res. Lett., 33, L06405, doi:10.1029/2005GL025583, 2006. 5177

Ji, L. and Peters, A. J.: Assessing vegetation response to drought in the northern Great
Plains using vegetation and drought indices, Remote Sensing of Environment, 87(1), 85-98,
doi:10.1016/S0034-4257(03)00174-3, 2003. 5169

Ji, L. and Peters, A. J.: Lag and seasonality considerations in evaluating AVHRR NDVI response
to precipitation, Photogramm. Eng. Rem. S., 71, 1053-1061, 2005. 5169

Kogan, F. N.: Droughts of the late 1980s in the United States as derived from NOAA polar
orbiting satellite data, B. Am. Meteorol. Soc., 76, 655—-668, 1995. 5169

Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., and Kumar, P.: A catchment-based ap-
proach to modeling land surface processes in a general circulation model: 1. Model structure,
J. Geophys. Res., 105, 24809-24822, doi:10.1029/2000JD900327, 2000. 5170, 5171

5183

HESSD
9, 5167-5193, 2012

Drought monitoring

utility
W. T. Crow et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2002JD003118
http://dx.doi.org/10.1175/BAMS-84-8-1013
http://dx.doi.org/10.1029/2002JD003296
http://dx.doi.org/10.1029/2005GL025583
http://dx.doi.org/10.1016/S0034-4257(03)00174-3
http://dx.doi.org/10.1029/2000JD900327

10

15

20

25

30

Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden, S., Lighty, L.,
Eastman, J. L., Doty, B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E. F.,, and Sheffield,
J.: Land Information System — An interoperable framework for high resolution land surface
modeling, Environ. Modell. Softw., 21, 1402-1415, 2006. 5170

Mitchell, K.: The community Noah land-surface model: User Guide Public Release
Version 2.7.1, available at: http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/Noah_LSM_
USERGUIDE_2.7.1.htm (last access: 13 April 2012), 2005. 5170

Mo, K. C., Long, L. N., Xia, Y., Yang, S. K., Schemm, J. E., and Ek, M. B.: Drought indices based
on the Climate Forecast System Reanalysis and ensemble NLDAS, J. Hydrometeorol., 12,
185-210, 2010. 5168

Musyimi, Z.: Temporal Relationships Between Remotely-Sensed Soil Mositure and NDVI over
Africa: Potential for Drought Early Warning, Master Thesis, University of Twenty, The Nether-
lands, 2010. 5169

Panu, U. S. and Sharma, T. C.: Challenge in drought research: Some perspectives and future
directions, Hydrol. Sci. J., 47, S19-S30, 2002.

Peled, E., Dutra, E., Viterbo, P.,, and Angert, A.: Technical Note: Comparing and ranking soil
drought indices performance over Europe, through remote-sensing of vegetation, Hydrol.
Earth Syst. Sci., 14, 271-277, doi:10.5194/hess-14-271-2010, 2010. 5169, 5173

Peters, A. J., Walter-Shea, E. A, Ji, L., Vina, A., Hayes, M., and Svoboda, M. D.: Drought
monitoring with NDVI-based Standardized Vegetation Index, Photogramme. Eng. Rem. S,
68, 71-75, 2002. 5169

Sheffield, J., Xia, Y., Luo, L., Wood, E. F, Ek, M., Mitchell, K. E., and the NLDAS Team: Drought
monitoring with the North American Land Data Assimilation System (NLDAS): Current ca-
pabilities and future challenges, in: Remote Sensing and Drought, edited by: Wardlow, B.,
Anderson, M., and Verdin, J., CRC Press, 480 pp., 2012. 5168

Van Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research, Cambridge Press,
484 pp., 2004. 5178

Wardlow, B., Anderson, M., and Verdin, J.: Remote Sensing and Drought, CRC Press, 480 pp.,
2012. 5168, 5181

Xia, Y., Mitchell, K. E., Ek, M. B., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C. J., Wei, H.,
Meng, J., Livneh, B., Duan, Q., and Lohmann, D.: Continental-scale water and energy flux
analysis and validation for the North American Land Data Assimilation System project phase

5184

HESSD
9, 5167-5193, 2012

Drought monitoring

utility
W. T. Crow et al.
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/Noah_LSM_USERGUIDE_2.7.1.htm
http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/Noah_LSM_USERGUIDE_2.7.1.htm
http://www.emc.ncep.noaa.gov/mmb/gcp/noahlsm/Noah_LSM_USERGUIDE_2.7.1.htm
http://dx.doi.org/10.5194/hess-14-271-2010

2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res., 117,
D03109, doi:10.1029/2011JD016048, 2012. 5172

Xie, P. and Arkin, P.: Global precipitation: A 17-year monthly analysis based on gauge obser-
vations, satellite estimates, and numerical model output, B. Am. Meteorol. Soc., 78, 2539—
2558, 1997. 5172

HESSD
9, 51675193, 2012

Jaded uoissnosiq

Drought monitoring

- utility

g W. T. Crow et al.
(@]

C

()]

@

(@]

5
-

Q

©

. Abstact Introduction.
 Tatles  Figues
wn

(@]

C

()]

(@]

35

> 1
Q

©

~ Bak  Cbse
g

wn

2
C

w

4

g
=}

-

3 O

@ () (L

5185


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2011JD016048

— Noah Root-Zone Soil Moisture
—e MODISNDVI

=
3

B (2} 0o

o © o o

Monthly Rank Fraction [-]

N
,>

2000' 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Y ear

Fig. 1. Example monthly Rank( NDVI) and Rank(8 y.,») time series for a 0.25° pixel in the
south-central United States.
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Fig. 6. CONUS land averages of: (a) R(L) for Noah, CLM, CLSM, and API root-zone soil mois- %.
ture predictions based on either the GDAS + CMAP or NLDAS-2 forcing data sets, and (b) =
percentage relative R(L) percentage difference for the modern LSMs (Noah, CLM, and CLSM) &
versus an AP baseline (i.e., 100+ [R(L) gy — R(L) api)/R(L) apy)- B
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Fig. 7. Spatial averages of R(-1) for Noah, CLM, CLSM, and API broken down by month-
of-year for Rank(@) within the: (a) extra-tropical Northern Hemisphere (ETNH), (b) tropical
Northern Hemisphere (TNH), (¢) tropical Southern Hemisphere (TSH), and (d) extra-tropical
Southern Hemisphere (ETSH).
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Fig. 8. Spatial averages of relative change in Noah, CLM, and CLSM R(-1) results versus
the API baseline (i.e., 100*[R(=1) .gm = R(=1) ap|]/R(=1) ap) broken down by month-of-year
for Rank(@) within the: (a) extra-tropical Northern Hemisphere (ETNH), (b) tropical Northern
Hemisphere (TNH), (c) tropical Southern Hemisphere (TSH), and (d) extra-tropical Southern
Hemisphere (ETSH).

5193

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnasiq

HESSD
9, 51675193, 2012

Drought monitoring
utility

W. T. Crow et al.

(8
S

]
2


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/5167/2012/hessd-9-5167-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

